دانش جوین
شنبه, تیر ۱۴, ۱۴۰۴
  • نخست
  • علمی
  • تکنولوژی
    • آرشیو تکنولوژی
    • نرم افزار، اپلیکیشن، سیستم عامل
    • خودرو
    • آرشیو فین‌تک
      • IT
      • دوربین
    • لپتاپ و کامپیوتر و سخت افزار
    • موبایل
  • بازی‌های کامپیوتری
  • پزشکی، سلامت، بهداشت
  • هنر و فرهنگ
  • مقالات
  • سایر پیوندها
    • همیار آی‌تی
  • ورود
بدون نتیجه
مشاهده همه نتیجه
  • نخست
  • علمی
  • تکنولوژی
    • آرشیو تکنولوژی
    • نرم افزار، اپلیکیشن، سیستم عامل
    • خودرو
    • آرشیو فین‌تک
      • IT
      • دوربین
    • لپتاپ و کامپیوتر و سخت افزار
    • موبایل
  • بازی‌های کامپیوتری
  • پزشکی، سلامت، بهداشت
  • هنر و فرهنگ
  • مقالات
  • سایر پیوندها
    • همیار آی‌تی
بدون نتیجه
مشاهده همه نتیجه
دانش جوین
بدون نتیجه
مشاهده همه نتیجه
صفحه اصلی هوش مصنوعی

ارمغان هوش مصنوعی برای تحول مواد ۲بعدی

خبرگزاری ایسنا توسط خبرگزاری ایسنا
۲۸ آبان ۱۴۰۳
در هوش مصنوعی
زمان خواندن: زمان موردنیاز برای مطالعه: 1 دقیقه
0
ارمغان هوش مصنوعی برای تحول مواد ۲بعدی
2
بازدیدها
اشتراک گذاری در تلگراماشتراک گذاری در توییتر

به گزارش ایسنا، پژوهشگران «دانشگاه توهوکو»(Tohoku University) یک روش را براساس یادگیری عمیق ابداع کرده‌اند که شناسایی دقیق و طبقه‌بندی مواد دوبعدی را با استفاده از «طیف‌سنجی رامان»(Raman spectroscopy) به طور قابل توجهی ساده می‌کند.

به نقل از آزونانو، روش‌های تحلیل سنتی رامان پرزحمت هستند و به تفسیر ذهنی نیاز دارند. ابداع و مطالعه مواد دوبعدی که در بسیاری از کاربردهای گوناگون شامل الکترونیک و فناوری پزشکی مورد استفاده قرار می‌گیرند، با این روش جدید تسریع خواهد شد.

«یاپینگ کی»(Yaping Qi) دانشیار دانشگاه توهوکو و پژوهشگر ارشد این پروژه گفت: ما گاهی اوقات فقط چند نمونه را از مواد دوبعدی مورد نیاز یا منابع محدودی را برای بررسی آنها داریم. در نتیجه، داده‌های طیفی به محدود شدن و توزیع نابرابر تمایل دارند. ما به دنبال یک مدل تولیدی بودیم که چنین مجموعه داده‌هایی را افزایش ‌دهد و جای خالی را برای ما پر کند.

داده‌های طیفی هفت ماده دوبعدی متفاوت و سه ترکیب مجزا به مدل یادگیری عمیق داده شد. پژوهشگران یک روش جدید را توسعه دادند که از مدل‌های «DDPM» برای تولید داده‌های مصنوعی بیشتر برای غلبه بر این مشکلات استفاده می‌کند.

این مدل با اضافه کردن نویز، داده‌های اصلی را بهبود می‌بخشد. سپس، مدل یاد می‌گیرد که برای حذف نویز کار کند و در نتیجه، یک خروجی منحصربه‌فرد را مطابق با توزیع داده‌های اصلی به وجود بیاورد.

پژوهشگران از طریق ترکیب این مجموعه داده با یک شبکه عصبی «CNN»، به دقت ۹۸.۸ درصد در طبقه‌بندی مجموعه داده اصلی و مهم‌تر از آن، دقت ۱۰۰ درصد در داده‌های تقویت‌شده دست یافتند.

این روش خودکار، عملکرد طبقه‌بندی را بهبود می‌بخشد و نیاز به مداخله دستی را کاهش می‌دهد. همچنین، کارآیی و مقیاس‌پذیری طیف‌سنجی رامان را برای شناسایی مواد دوبعدی افزایش می‌دهد.

کی گفت: این روش یک راه حل قوی و خودکار را برای تحلیل بسیار دقیق مواد دوبعدی ارائه می‌دهد. ادغام روش‌های یادگیری عمیق، پژوهش در حوزه علم مواد و کنترل کیفیت صنعتی را نوید می‌دهد که در آنها شناسایی قابل اعتماد و سریع بسیار مهم است.

این پژوهش اولین مورد استفاده از DDPM را در ایجاد داده‌های طیفی رامان ارائه می‌کند و روزنه‌ای را برای تحلیل طیف‌سنجی خودکار و مؤثرتر می‌گشاید. حتی در شرایطی که به دست آوردن داده‌های تجربی محدود یا چالش‌برانگیز است، این روش می‌تواند امکان توصیف دقیق مواد را فراهم کند. در نهایت، این روش می‌تواند بررسی‌ آزمایشگاهی را به یک محصول ملموس تبدیل کند که مصرف‌کنندگان بتوانند آن را از فروشگاه‌ها بخرند.

این پژوهش در مجله «Applied Materials Today» به چاپ رسید.

انتهای پیام

به گزارش ایسنا، پژوهشگران «دانشگاه توهوکو»(Tohoku University) یک روش را براساس یادگیری عمیق ابداع کرده‌اند که شناسایی دقیق و طبقه‌بندی مواد دوبعدی را با استفاده از «طیف‌سنجی رامان»(Raman spectroscopy) به طور قابل توجهی ساده می‌کند.

به نقل از آزونانو، روش‌های تحلیل سنتی رامان پرزحمت هستند و به تفسیر ذهنی نیاز دارند. ابداع و مطالعه مواد دوبعدی که در بسیاری از کاربردهای گوناگون شامل الکترونیک و فناوری پزشکی مورد استفاده قرار می‌گیرند، با این روش جدید تسریع خواهد شد.

«یاپینگ کی»(Yaping Qi) دانشیار دانشگاه توهوکو و پژوهشگر ارشد این پروژه گفت: ما گاهی اوقات فقط چند نمونه را از مواد دوبعدی مورد نیاز یا منابع محدودی را برای بررسی آنها داریم. در نتیجه، داده‌های طیفی به محدود شدن و توزیع نابرابر تمایل دارند. ما به دنبال یک مدل تولیدی بودیم که چنین مجموعه داده‌هایی را افزایش ‌دهد و جای خالی را برای ما پر کند.

داده‌های طیفی هفت ماده دوبعدی متفاوت و سه ترکیب مجزا به مدل یادگیری عمیق داده شد. پژوهشگران یک روش جدید را توسعه دادند که از مدل‌های «DDPM» برای تولید داده‌های مصنوعی بیشتر برای غلبه بر این مشکلات استفاده می‌کند.

این مدل با اضافه کردن نویز، داده‌های اصلی را بهبود می‌بخشد. سپس، مدل یاد می‌گیرد که برای حذف نویز کار کند و در نتیجه، یک خروجی منحصربه‌فرد را مطابق با توزیع داده‌های اصلی به وجود بیاورد.

پژوهشگران از طریق ترکیب این مجموعه داده با یک شبکه عصبی «CNN»، به دقت ۹۸.۸ درصد در طبقه‌بندی مجموعه داده اصلی و مهم‌تر از آن، دقت ۱۰۰ درصد در داده‌های تقویت‌شده دست یافتند.

این روش خودکار، عملکرد طبقه‌بندی را بهبود می‌بخشد و نیاز به مداخله دستی را کاهش می‌دهد. همچنین، کارآیی و مقیاس‌پذیری طیف‌سنجی رامان را برای شناسایی مواد دوبعدی افزایش می‌دهد.

کی گفت: این روش یک راه حل قوی و خودکار را برای تحلیل بسیار دقیق مواد دوبعدی ارائه می‌دهد. ادغام روش‌های یادگیری عمیق، پژوهش در حوزه علم مواد و کنترل کیفیت صنعتی را نوید می‌دهد که در آنها شناسایی قابل اعتماد و سریع بسیار مهم است.

این پژوهش اولین مورد استفاده از DDPM را در ایجاد داده‌های طیفی رامان ارائه می‌کند و روزنه‌ای را برای تحلیل طیف‌سنجی خودکار و مؤثرتر می‌گشاید. حتی در شرایطی که به دست آوردن داده‌های تجربی محدود یا چالش‌برانگیز است، این روش می‌تواند امکان توصیف دقیق مواد را فراهم کند. در نهایت، این روش می‌تواند بررسی‌ آزمایشگاهی را به یک محصول ملموس تبدیل کند که مصرف‌کنندگان بتوانند آن را از فروشگاه‌ها بخرند.

این پژوهش در مجله «Applied Materials Today» به چاپ رسید.

انتهای پیام

اخبارجدیدترین

محققان:‌ در ۱۴ درصد از مقالات علمی نشانه‌های استفاده از هوش مصنوعی وجود دارد

سیری هوشمند احتمالاً با کمک OpenAI یا آنتروپیک ساخته می‌شود

مارک زاکربرگ از آزمایشگاه هوش مصنوعی جدید متا رونمایی کرد؛ رقابت جدی‌تر با OpenAI

به گزارش ایسنا، پژوهشگران «دانشگاه توهوکو»(Tohoku University) یک روش را براساس یادگیری عمیق ابداع کرده‌اند که شناسایی دقیق و طبقه‌بندی مواد دوبعدی را با استفاده از «طیف‌سنجی رامان»(Raman spectroscopy) به طور قابل توجهی ساده می‌کند.

به نقل از آزونانو، روش‌های تحلیل سنتی رامان پرزحمت هستند و به تفسیر ذهنی نیاز دارند. ابداع و مطالعه مواد دوبعدی که در بسیاری از کاربردهای گوناگون شامل الکترونیک و فناوری پزشکی مورد استفاده قرار می‌گیرند، با این روش جدید تسریع خواهد شد.

«یاپینگ کی»(Yaping Qi) دانشیار دانشگاه توهوکو و پژوهشگر ارشد این پروژه گفت: ما گاهی اوقات فقط چند نمونه را از مواد دوبعدی مورد نیاز یا منابع محدودی را برای بررسی آنها داریم. در نتیجه، داده‌های طیفی به محدود شدن و توزیع نابرابر تمایل دارند. ما به دنبال یک مدل تولیدی بودیم که چنین مجموعه داده‌هایی را افزایش ‌دهد و جای خالی را برای ما پر کند.

داده‌های طیفی هفت ماده دوبعدی متفاوت و سه ترکیب مجزا به مدل یادگیری عمیق داده شد. پژوهشگران یک روش جدید را توسعه دادند که از مدل‌های «DDPM» برای تولید داده‌های مصنوعی بیشتر برای غلبه بر این مشکلات استفاده می‌کند.

این مدل با اضافه کردن نویز، داده‌های اصلی را بهبود می‌بخشد. سپس، مدل یاد می‌گیرد که برای حذف نویز کار کند و در نتیجه، یک خروجی منحصربه‌فرد را مطابق با توزیع داده‌های اصلی به وجود بیاورد.

پژوهشگران از طریق ترکیب این مجموعه داده با یک شبکه عصبی «CNN»، به دقت ۹۸.۸ درصد در طبقه‌بندی مجموعه داده اصلی و مهم‌تر از آن، دقت ۱۰۰ درصد در داده‌های تقویت‌شده دست یافتند.

این روش خودکار، عملکرد طبقه‌بندی را بهبود می‌بخشد و نیاز به مداخله دستی را کاهش می‌دهد. همچنین، کارآیی و مقیاس‌پذیری طیف‌سنجی رامان را برای شناسایی مواد دوبعدی افزایش می‌دهد.

کی گفت: این روش یک راه حل قوی و خودکار را برای تحلیل بسیار دقیق مواد دوبعدی ارائه می‌دهد. ادغام روش‌های یادگیری عمیق، پژوهش در حوزه علم مواد و کنترل کیفیت صنعتی را نوید می‌دهد که در آنها شناسایی قابل اعتماد و سریع بسیار مهم است.

این پژوهش اولین مورد استفاده از DDPM را در ایجاد داده‌های طیفی رامان ارائه می‌کند و روزنه‌ای را برای تحلیل طیف‌سنجی خودکار و مؤثرتر می‌گشاید. حتی در شرایطی که به دست آوردن داده‌های تجربی محدود یا چالش‌برانگیز است، این روش می‌تواند امکان توصیف دقیق مواد را فراهم کند. در نهایت، این روش می‌تواند بررسی‌ آزمایشگاهی را به یک محصول ملموس تبدیل کند که مصرف‌کنندگان بتوانند آن را از فروشگاه‌ها بخرند.

این پژوهش در مجله «Applied Materials Today» به چاپ رسید.

انتهای پیام

به گزارش ایسنا، پژوهشگران «دانشگاه توهوکو»(Tohoku University) یک روش را براساس یادگیری عمیق ابداع کرده‌اند که شناسایی دقیق و طبقه‌بندی مواد دوبعدی را با استفاده از «طیف‌سنجی رامان»(Raman spectroscopy) به طور قابل توجهی ساده می‌کند.

به نقل از آزونانو، روش‌های تحلیل سنتی رامان پرزحمت هستند و به تفسیر ذهنی نیاز دارند. ابداع و مطالعه مواد دوبعدی که در بسیاری از کاربردهای گوناگون شامل الکترونیک و فناوری پزشکی مورد استفاده قرار می‌گیرند، با این روش جدید تسریع خواهد شد.

«یاپینگ کی»(Yaping Qi) دانشیار دانشگاه توهوکو و پژوهشگر ارشد این پروژه گفت: ما گاهی اوقات فقط چند نمونه را از مواد دوبعدی مورد نیاز یا منابع محدودی را برای بررسی آنها داریم. در نتیجه، داده‌های طیفی به محدود شدن و توزیع نابرابر تمایل دارند. ما به دنبال یک مدل تولیدی بودیم که چنین مجموعه داده‌هایی را افزایش ‌دهد و جای خالی را برای ما پر کند.

داده‌های طیفی هفت ماده دوبعدی متفاوت و سه ترکیب مجزا به مدل یادگیری عمیق داده شد. پژوهشگران یک روش جدید را توسعه دادند که از مدل‌های «DDPM» برای تولید داده‌های مصنوعی بیشتر برای غلبه بر این مشکلات استفاده می‌کند.

این مدل با اضافه کردن نویز، داده‌های اصلی را بهبود می‌بخشد. سپس، مدل یاد می‌گیرد که برای حذف نویز کار کند و در نتیجه، یک خروجی منحصربه‌فرد را مطابق با توزیع داده‌های اصلی به وجود بیاورد.

پژوهشگران از طریق ترکیب این مجموعه داده با یک شبکه عصبی «CNN»، به دقت ۹۸.۸ درصد در طبقه‌بندی مجموعه داده اصلی و مهم‌تر از آن، دقت ۱۰۰ درصد در داده‌های تقویت‌شده دست یافتند.

این روش خودکار، عملکرد طبقه‌بندی را بهبود می‌بخشد و نیاز به مداخله دستی را کاهش می‌دهد. همچنین، کارآیی و مقیاس‌پذیری طیف‌سنجی رامان را برای شناسایی مواد دوبعدی افزایش می‌دهد.

کی گفت: این روش یک راه حل قوی و خودکار را برای تحلیل بسیار دقیق مواد دوبعدی ارائه می‌دهد. ادغام روش‌های یادگیری عمیق، پژوهش در حوزه علم مواد و کنترل کیفیت صنعتی را نوید می‌دهد که در آنها شناسایی قابل اعتماد و سریع بسیار مهم است.

این پژوهش اولین مورد استفاده از DDPM را در ایجاد داده‌های طیفی رامان ارائه می‌کند و روزنه‌ای را برای تحلیل طیف‌سنجی خودکار و مؤثرتر می‌گشاید. حتی در شرایطی که به دست آوردن داده‌های تجربی محدود یا چالش‌برانگیز است، این روش می‌تواند امکان توصیف دقیق مواد را فراهم کند. در نهایت، این روش می‌تواند بررسی‌ آزمایشگاهی را به یک محصول ملموس تبدیل کند که مصرف‌کنندگان بتوانند آن را از فروشگاه‌ها بخرند.

این پژوهش در مجله «Applied Materials Today» به چاپ رسید.

انتهای پیام

پست قبلی

هوش مصنوعی و ریزپرنده‌ها؛ انقلابی در فناوری‌های پیشرفته

پست بعدی

تبلیغ ناشیانه کوکاکولا که با هوش مصنوعی ساخته شده سوژه کاربران شد

مربوطه پست ها

محققان:‌ در ۱۴ درصد از مقالات علمی نشانه‌های استفاده از هوش مصنوعی وجود دارد
هوش مصنوعی

محققان:‌ در ۱۴ درصد از مقالات علمی نشانه‌های استفاده از هوش مصنوعی وجود دارد

۱۴ تیر ۱۴۰۴
سیری هوشمند احتمالاً با کمک OpenAI یا آنتروپیک ساخته می‌شود
هوش مصنوعی

سیری هوشمند احتمالاً با کمک OpenAI یا آنتروپیک ساخته می‌شود

۱۰ تیر ۱۴۰۴
مارک زاکربرگ از آزمایشگاه هوش مصنوعی جدید متا رونمایی کرد؛ رقابت جدی‌تر با OpenAI
هوش مصنوعی

مارک زاکربرگ از آزمایشگاه هوش مصنوعی جدید متا رونمایی کرد؛ رقابت جدی‌تر با OpenAI

۱۰ تیر ۱۴۰۴
اولین مسابقه فوتبال ربات‌های انسان‌نما با هوش مصنوعی در چین برگزار شد [تماشا کنید]
هوش مصنوعی

اولین مسابقه فوتبال ربات‌های انسان‌نما با هوش مصنوعی در چین برگزار شد [تماشا کنید]

۱۰ تیر ۱۴۰۴
مدیرعامل آمازون می‌گوید هوش مصنوعی نیاز به کارمندان را کاهش خواهد داد
هوش مصنوعی

مدیرعامل آمازون می‌گوید هوش مصنوعی نیاز به کارمندان را کاهش خواهد داد

۱۰ تیر ۱۴۰۴
عرضه مدل هوش مصنوعی DeepSeek R2 به دلیل نارضایتی مدیرعامل شرکت به تعویق افتاد
هوش مصنوعی

عرضه مدل هوش مصنوعی DeepSeek R2 به دلیل نارضایتی مدیرعامل شرکت به تعویق افتاد

۰۹ تیر ۱۴۰۴

دیدگاهتان را بنویسید لغو پاسخ

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

بیست − یازده =

دانلود اپلیکیشن دانش جوین

جدیدترین اخبار

  • گوشی سه‌بار تاشو، پرچمدار بعدی سامسونگ با قیمتی نجومی/ عکس
  • پخش یک سریال محرمی جدید؛ دعوت از چهره‌هایی که نیاز تلویزیون است
  • قطعه‌ای که در وصف سالار شهیدان اجرا شد؛ تأکید به ترویج فرهنگ عاشورایی
  • برگزاری مجالس هنر تعزیه در فرهنگسرای نیاوران
  • وداع با حضرت علی اکبر (ع) نقاشی جدید حسن روح‌الامین شد
  • پاسینیک
  • خرید سرور hp
  • خرید سرور ایران و خارج
  • مانیتور ساینا کوییک
  • خرید یوسی
  • حوله استخری
  • خرید قهوه
  • تجارتخانه آراد برندینگ
  • ویرایش مقاله
  • تابلو لایت باکس
  • قیمت سرور استوک اچ پی hp
  • خرید سرور hp
  • کاغذ a4
  • قیمت هاست فروشگاهی
  • پرشین هتل
  • خرید لیفتراک دست دوم
  • آموزش علوم اول ابتدایی
  • راحت ترین روش یادگیری انگلیسی

تمام حقوق مادی و معنوی وب‌سایت دانش جوین محفوظ است و کپی بدون ذکر منبع قابل پیگرد قانونی خواهد بود.

خوش آمدید!

ورود به حساب کاربری خود در زیر

رمز عبور را فراموش کرده اید؟

رمز عبور خود را بازیابی کنید

لطفا نام کاربری یا آدرس ایمیل خود را برای تنظیم مجدد رمز عبور خود وارد کنید.

ورود
بدون نتیجه
مشاهده همه نتیجه
  • نخست
  • علمی
  • تکنولوژی
    • آرشیو تکنولوژی
    • نرم افزار، اپلیکیشن، سیستم عامل
    • خودرو
    • آرشیو فین‌تک
      • IT
      • دوربین
    • لپتاپ و کامپیوتر و سخت افزار
    • موبایل
  • بازی‌های کامپیوتری
  • پزشکی، سلامت، بهداشت
  • هنر و فرهنگ
  • مقالات
  • سایر پیوندها
    • همیار آی‌تی

تمام حقوق مادی و معنوی وب‌سایت دانش جوین محفوظ است و کپی بدون ذکر منبع قابل پیگرد قانونی خواهد بود.