دانش جوین
سه شنبه, خرداد ۲۰, ۱۴۰۴
  • نخست
  • علمی
  • تکنولوژی
    • آرشیو تکنولوژی
    • نرم افزار، اپلیکیشن، سیستم عامل
    • خودرو
    • آرشیو فین‌تک
      • IT
      • دوربین
    • لپتاپ و کامپیوتر و سخت افزار
    • موبایل
  • بازی‌های کامپیوتری
  • پزشکی، سلامت، بهداشت
  • هنر و فرهنگ
  • مقالات
  • سایر پیوندها
    • همیار آی‌تی
  • ورود
بدون نتیجه
مشاهده همه نتیجه
  • نخست
  • علمی
  • تکنولوژی
    • آرشیو تکنولوژی
    • نرم افزار، اپلیکیشن، سیستم عامل
    • خودرو
    • آرشیو فین‌تک
      • IT
      • دوربین
    • لپتاپ و کامپیوتر و سخت افزار
    • موبایل
  • بازی‌های کامپیوتری
  • پزشکی، سلامت، بهداشت
  • هنر و فرهنگ
  • مقالات
  • سایر پیوندها
    • همیار آی‌تی
بدون نتیجه
مشاهده همه نتیجه
دانش جوین
بدون نتیجه
مشاهده همه نتیجه
صفحه اصلی هوش مصنوعی

هوش مصنوعی با «MRI» کل بدن، عوامل دخیل در مرگ را پیش‌بینی می‌کند

خبرگزاری ایسنا توسط خبرگزاری ایسنا
۱۷ آذر ۱۴۰۳
در هوش مصنوعی
زمان خواندن: زمان موردنیاز برای مطالعه: 1 دقیقه
2
هوش مصنوعی با «MRI» کل بدن، عوامل دخیل در مرگ را پیش‌بینی می‌کند
11
بازدیدها
اشتراک گذاری در تلگراماشتراک گذاری در توییتر

به گزارش ایسنا، معیارهای ترکیب بدن، از جمله تجمع بافت چربی و ماهیچه‌های اسکلتی، ارتباط قوی با نتایج بالینی نشان داده‌اند و به‌ عنوان نشانگرهای زیستی مهم برای بهبود ارزیابی عوامل خطر شخصی‌سازی شده ظاهر شدند. با این حال، استفاده از آنها در جریان مطالعات بالینی به دلیل وجود محدودیت‌های زمانی و منابع محدود کار دشواری است.

به نقل از نیوز مدیکال، رویکردهای کاملا خودکار مبتنی بر هوش مصنوعی می‌توانند بر محدودیت‌های فعلی غلبه کنند و ساخت ارزیابی‌های دقیق‌تر و مقیاس‌پذیرتر را ممکن ‌سازند. این یافته‌ها بر اهمیت توسعه ابزارهای استاندارد برای اطمینان از کاربرد بالینی در بین جمعیت‌های مختلف تاکید می‌کند.

در این مطالعه از داده‌های دو مطالعه مبتنی بر جمعیت گسترده استفاده شد. بانک زیستی بریتانیا(UKBB) که متشکل از شرکت‌کنندگان ۴۵ تا ۸۴ ساله بود، و گروه ملی آلمان(NAKO)، با شرکت‌کنندگان ۴۰ تا ۷۵ ساله. هر دو مطالعه داده‌های بالینی جامعی را جمع‌آوری کردند و از یک پروتکل MRI دقیق استفاده کردند.

هدف اولیه ایجاد یک چارچوب یادگیری عمیق برای تعیین کمیت اندازه‌های ترکیب حجمی بدن، مانند بافت چربی زیر جلدی(SAT)، بافت چربی احشایی(VAT)، عضله اسکلتی(SM)، کسر چربی ماهیچه اسکلتی(SMFF) و بافت چربی داخل عضلانی(IMAT)، با استفاده از MRI ‌کل بدن به صورت خودکار بود.

نتیجه‌گیری

این مطالعه یک چارچوب یادگیری عمیق خودکار برای تجزیه و تحلیل ترکیب بدن مبتنی بر MRI کل بدن ایجاد کرد و ارزش آن را برای پیش‌بینی مرگ و میر در بیش از ۳۰ هزار نفر را ارزیابی کرد. اندازه‌گیری‌های حجمی، پیش‌بینی‌کننده‌های مستقل مرگ‌ومیر بودند، که از رویکردهای سنتی تک موردی عملکرد بهتری داشتند. به رغم این نقاط قوت، در این مطالعه محدودیت‌هایی نیز وجود داشت مانند گروه داوطلبان که عمدتا نشانگر جوامع غربی بودند و همچنین مدت زمان محدود پیگیری، که می‌تواند بر قابل تعمیم بودن مطالعه تاثیر بگذارد.

انتهای پیام

به گزارش ایسنا، معیارهای ترکیب بدن، از جمله تجمع بافت چربی و ماهیچه‌های اسکلتی، ارتباط قوی با نتایج بالینی نشان داده‌اند و به‌ عنوان نشانگرهای زیستی مهم برای بهبود ارزیابی عوامل خطر شخصی‌سازی شده ظاهر شدند. با این حال، استفاده از آنها در جریان مطالعات بالینی به دلیل وجود محدودیت‌های زمانی و منابع محدود کار دشواری است.

به نقل از نیوز مدیکال، رویکردهای کاملا خودکار مبتنی بر هوش مصنوعی می‌توانند بر محدودیت‌های فعلی غلبه کنند و ساخت ارزیابی‌های دقیق‌تر و مقیاس‌پذیرتر را ممکن ‌سازند. این یافته‌ها بر اهمیت توسعه ابزارهای استاندارد برای اطمینان از کاربرد بالینی در بین جمعیت‌های مختلف تاکید می‌کند.

در این مطالعه از داده‌های دو مطالعه مبتنی بر جمعیت گسترده استفاده شد. بانک زیستی بریتانیا(UKBB) که متشکل از شرکت‌کنندگان ۴۵ تا ۸۴ ساله بود، و گروه ملی آلمان(NAKO)، با شرکت‌کنندگان ۴۰ تا ۷۵ ساله. هر دو مطالعه داده‌های بالینی جامعی را جمع‌آوری کردند و از یک پروتکل MRI دقیق استفاده کردند.

هدف اولیه ایجاد یک چارچوب یادگیری عمیق برای تعیین کمیت اندازه‌های ترکیب حجمی بدن، مانند بافت چربی زیر جلدی(SAT)، بافت چربی احشایی(VAT)، عضله اسکلتی(SM)، کسر چربی ماهیچه اسکلتی(SMFF) و بافت چربی داخل عضلانی(IMAT)، با استفاده از MRI ‌کل بدن به صورت خودکار بود.

نتیجه‌گیری

این مطالعه یک چارچوب یادگیری عمیق خودکار برای تجزیه و تحلیل ترکیب بدن مبتنی بر MRI کل بدن ایجاد کرد و ارزش آن را برای پیش‌بینی مرگ و میر در بیش از ۳۰ هزار نفر را ارزیابی کرد. اندازه‌گیری‌های حجمی، پیش‌بینی‌کننده‌های مستقل مرگ‌ومیر بودند، که از رویکردهای سنتی تک موردی عملکرد بهتری داشتند. به رغم این نقاط قوت، در این مطالعه محدودیت‌هایی نیز وجود داشت مانند گروه داوطلبان که عمدتا نشانگر جوامع غربی بودند و همچنین مدت زمان محدود پیگیری، که می‌تواند بر قابل تعمیم بودن مطالعه تاثیر بگذارد.

انتهای پیام

اخبارجدیدترین

دیوان عالی بریتانیا: وکلا باید مراقب استفاده از محتواهای تولیدشده با هوش مصنوعی باشند

هوش مصنوعی Eleven v3 معرفی شد/ طبیعی‌ترین مدل تبدیل متن به گفتار

وکلایی که به هوش مصنوعی استناد کنند، مجازات می‌شوند

به گزارش ایسنا، معیارهای ترکیب بدن، از جمله تجمع بافت چربی و ماهیچه‌های اسکلتی، ارتباط قوی با نتایج بالینی نشان داده‌اند و به‌ عنوان نشانگرهای زیستی مهم برای بهبود ارزیابی عوامل خطر شخصی‌سازی شده ظاهر شدند. با این حال، استفاده از آنها در جریان مطالعات بالینی به دلیل وجود محدودیت‌های زمانی و منابع محدود کار دشواری است.

به نقل از نیوز مدیکال، رویکردهای کاملا خودکار مبتنی بر هوش مصنوعی می‌توانند بر محدودیت‌های فعلی غلبه کنند و ساخت ارزیابی‌های دقیق‌تر و مقیاس‌پذیرتر را ممکن ‌سازند. این یافته‌ها بر اهمیت توسعه ابزارهای استاندارد برای اطمینان از کاربرد بالینی در بین جمعیت‌های مختلف تاکید می‌کند.

در این مطالعه از داده‌های دو مطالعه مبتنی بر جمعیت گسترده استفاده شد. بانک زیستی بریتانیا(UKBB) که متشکل از شرکت‌کنندگان ۴۵ تا ۸۴ ساله بود، و گروه ملی آلمان(NAKO)، با شرکت‌کنندگان ۴۰ تا ۷۵ ساله. هر دو مطالعه داده‌های بالینی جامعی را جمع‌آوری کردند و از یک پروتکل MRI دقیق استفاده کردند.

هدف اولیه ایجاد یک چارچوب یادگیری عمیق برای تعیین کمیت اندازه‌های ترکیب حجمی بدن، مانند بافت چربی زیر جلدی(SAT)، بافت چربی احشایی(VAT)، عضله اسکلتی(SM)، کسر چربی ماهیچه اسکلتی(SMFF) و بافت چربی داخل عضلانی(IMAT)، با استفاده از MRI ‌کل بدن به صورت خودکار بود.

نتیجه‌گیری

این مطالعه یک چارچوب یادگیری عمیق خودکار برای تجزیه و تحلیل ترکیب بدن مبتنی بر MRI کل بدن ایجاد کرد و ارزش آن را برای پیش‌بینی مرگ و میر در بیش از ۳۰ هزار نفر را ارزیابی کرد. اندازه‌گیری‌های حجمی، پیش‌بینی‌کننده‌های مستقل مرگ‌ومیر بودند، که از رویکردهای سنتی تک موردی عملکرد بهتری داشتند. به رغم این نقاط قوت، در این مطالعه محدودیت‌هایی نیز وجود داشت مانند گروه داوطلبان که عمدتا نشانگر جوامع غربی بودند و همچنین مدت زمان محدود پیگیری، که می‌تواند بر قابل تعمیم بودن مطالعه تاثیر بگذارد.

انتهای پیام

به گزارش ایسنا، معیارهای ترکیب بدن، از جمله تجمع بافت چربی و ماهیچه‌های اسکلتی، ارتباط قوی با نتایج بالینی نشان داده‌اند و به‌ عنوان نشانگرهای زیستی مهم برای بهبود ارزیابی عوامل خطر شخصی‌سازی شده ظاهر شدند. با این حال، استفاده از آنها در جریان مطالعات بالینی به دلیل وجود محدودیت‌های زمانی و منابع محدود کار دشواری است.

به نقل از نیوز مدیکال، رویکردهای کاملا خودکار مبتنی بر هوش مصنوعی می‌توانند بر محدودیت‌های فعلی غلبه کنند و ساخت ارزیابی‌های دقیق‌تر و مقیاس‌پذیرتر را ممکن ‌سازند. این یافته‌ها بر اهمیت توسعه ابزارهای استاندارد برای اطمینان از کاربرد بالینی در بین جمعیت‌های مختلف تاکید می‌کند.

در این مطالعه از داده‌های دو مطالعه مبتنی بر جمعیت گسترده استفاده شد. بانک زیستی بریتانیا(UKBB) که متشکل از شرکت‌کنندگان ۴۵ تا ۸۴ ساله بود، و گروه ملی آلمان(NAKO)، با شرکت‌کنندگان ۴۰ تا ۷۵ ساله. هر دو مطالعه داده‌های بالینی جامعی را جمع‌آوری کردند و از یک پروتکل MRI دقیق استفاده کردند.

هدف اولیه ایجاد یک چارچوب یادگیری عمیق برای تعیین کمیت اندازه‌های ترکیب حجمی بدن، مانند بافت چربی زیر جلدی(SAT)، بافت چربی احشایی(VAT)، عضله اسکلتی(SM)، کسر چربی ماهیچه اسکلتی(SMFF) و بافت چربی داخل عضلانی(IMAT)، با استفاده از MRI ‌کل بدن به صورت خودکار بود.

نتیجه‌گیری

این مطالعه یک چارچوب یادگیری عمیق خودکار برای تجزیه و تحلیل ترکیب بدن مبتنی بر MRI کل بدن ایجاد کرد و ارزش آن را برای پیش‌بینی مرگ و میر در بیش از ۳۰ هزار نفر را ارزیابی کرد. اندازه‌گیری‌های حجمی، پیش‌بینی‌کننده‌های مستقل مرگ‌ومیر بودند، که از رویکردهای سنتی تک موردی عملکرد بهتری داشتند. به رغم این نقاط قوت، در این مطالعه محدودیت‌هایی نیز وجود داشت مانند گروه داوطلبان که عمدتا نشانگر جوامع غربی بودند و همچنین مدت زمان محدود پیگیری، که می‌تواند بر قابل تعمیم بودن مطالعه تاثیر بگذارد.

انتهای پیام

پست قبلی

وزیر پیشین ارتباطات: لایه‌های زیاد فیلترینگ باعث کاهش سرعت اینترنت شده

پست بعدی

دستور ویژه وزیر ارتباطات به معاونان خود درباره حمایت از دانشجویان

مربوطه پست ها

دیوان عالی بریتانیا: وکلا باید مراقب استفاده از محتواهای تولیدشده با هوش مصنوعی باشند
هوش مصنوعی

دیوان عالی بریتانیا: وکلا باید مراقب استفاده از محتواهای تولیدشده با هوش مصنوعی باشند

۱۹ خرداد ۱۴۰۴
هوش مصنوعی Eleven v3 معرفی شد/ طبیعی‌ترین مدل تبدیل متن به گفتار
هوش مصنوعی

هوش مصنوعی Eleven v3 معرفی شد/ طبیعی‌ترین مدل تبدیل متن به گفتار

۱۹ خرداد ۱۴۰۴
وکلایی که به هوش مصنوعی استناد کنند، مجازات می‌شوند
هوش مصنوعی

وکلایی که به هوش مصنوعی استناد کنند، مجازات می‌شوند

۱۹ خرداد ۱۴۰۴
چین از RoboBrain 2.0 رونمایی کرد؛ قدرتمندترین مدل هوش مصنوعی متن‌باز جهان برای ربات‌ها
هوش مصنوعی

چین از RoboBrain 2.0 رونمایی کرد؛ قدرتمندترین مدل هوش مصنوعی متن‌باز جهان برای ربات‌ها

۱۹ خرداد ۱۴۰۴
ترویج افراطی هوش مصنوعی در میان دانشجویان
هوش مصنوعی

ترویج افراطی هوش مصنوعی در میان دانشجویان

۱۹ خرداد ۱۴۰۴
12 تیم برتر عامل‌های هوشمند مدل‌های زبانی بزرگ معرفی شدند
هوش مصنوعی

12 تیم برتر عامل‌های هوشمند مدل‌های زبانی بزرگ معرفی شدند

۱۹ خرداد ۱۴۰۴

دیدگاهتان را بنویسید لغو پاسخ

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

دو × یک =

دانلود اپلیکیشن دانش جوین

جدیدترین اخبار

  • بهترین چاپخانه‌های دیجیتال را از کجا پیدا کنیم؟ راهنمای جامع انتخاب چاپخانه حرفه‌ای
  • ۴۰ هزار رشته قنات در کشور احیا می شود
  • آب مسأله اول کشور شده است
  • ۱۹ میلیون هکتار زمین طی ۵ سال آبخیزداری می‌شود
  • بررسی بازار ارزهای دیجیتال در هفته‌ای که گذشت
  • پاسینیک
  • خرید سرور hp
  • خرید سرور ایران و خارج
  • مانیتور ساینا کوییک
  • خرید یوسی
  • حوله استخری
  • خرید قهوه
  • تجارتخانه آراد برندینگ
  • ویرایش مقاله
  • تابلو لایت باکس
  • قیمت سرور استوک اچ پی hp
  • خرید سرور hp
  • کاغذ a4
  • قیمت هاست فروشگاهی
  • پرشین هتل
  • خرید لیفتراک دست دوم
  • آموزش علوم اول ابتدایی

تمام حقوق مادی و معنوی وب‌سایت دانش جوین محفوظ است و کپی بدون ذکر منبع قابل پیگرد قانونی خواهد بود.

خوش آمدید!

ورود به حساب کاربری خود در زیر

رمز عبور را فراموش کرده اید؟

رمز عبور خود را بازیابی کنید

لطفا نام کاربری یا آدرس ایمیل خود را برای تنظیم مجدد رمز عبور خود وارد کنید.

ورود
بدون نتیجه
مشاهده همه نتیجه
  • نخست
  • علمی
  • تکنولوژی
    • آرشیو تکنولوژی
    • نرم افزار، اپلیکیشن، سیستم عامل
    • خودرو
    • آرشیو فین‌تک
      • IT
      • دوربین
    • لپتاپ و کامپیوتر و سخت افزار
    • موبایل
  • بازی‌های کامپیوتری
  • پزشکی، سلامت، بهداشت
  • هنر و فرهنگ
  • مقالات
  • سایر پیوندها
    • همیار آی‌تی

تمام حقوق مادی و معنوی وب‌سایت دانش جوین محفوظ است و کپی بدون ذکر منبع قابل پیگرد قانونی خواهد بود.